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In this paper, Adomian’s decomposition scheme is presented as
an alternate method for solving the nonlinear Klein—-Gordon equa-
tion. The method is demonstrated by several examples. Comparing
the scheme with existing collocation, finite difference and finite
element techniques shows that the present approach is highly accu-
rate and converges rapidly. © 1996 Academic Press, Inc.

1. INTRODUCTION

Recently, Adomian’s decomposition scheme is emerging
as an alternate method for solving a wide range of problems
whose mathematical models yield equations or system of
equations involving algebraic, differential, integral, inte-
gro-differential, or differential-delay terms (for example,
see [1-16]). It has been shown that the method yields
rapidly convergent series solutions to linear and nonlinear
deterministic and stochastic equations. In some instances,
if the problem is nonlinear, then the linearization of the
perturbation method yields a set of partial differential
equations that needs to be solved. On the other hand, the
decomposition method provides a direct scheme for solving
the underlying problem and does not require linearization.
We shall, among other things, present this in the paper.

Our attention will focus on the nonlinear Klein—Gordon
equation of the form

and b is real, g is a given nonlinear function, and fis a
known function.

Equations (1.1)—(1.2) is one of the important mathemati-
cal models in quantum mechanics [23-24] and it occurs in
relativistic physics [20-21] as a model of dispersive phe-
nomena. There are numerous papers dealing with the exis-
tence, uniqueness of the smooth and weak solutions of
(1.1)-(1.2) (see [18]), and with the numerical solutions
using finite difference, finite element, or collocation meth-
ods such as in [17, 19, 22].

2. DECOMPOSITION METHOD AND
KLEIN-GORDON EQUATION

In this section we shall describe the main algorithm of
Adomian’s decomposition method as it applies to a general
nonlinear equation of the form

u— Nu) =f, (2.1)
where N is a nonlinear operator on a Hilbert space H, f
is a known element of H, and we are seeking u € H
satisfying (2.1). We assume that for every f € H, Eq. (2.1)
has a unique solution.

The decomposition technique consists of representing
the solution of (2.1) as a series

%u(x, 1) ®

FHED — N, 1) + bule,) + gluCx, 0) = fr ) (1) w=3u, 22)
n=0
u(x, 0) = ao(x), ot (x,0) = a:(x) (12)  and the nonlinear operator N is decomposed as
with N@w) = A,, (2.3)
n=0
x=(x1,%,...,Xn) ER", t€(0,T],
where the A,’s are Adomian’s polynomials of uy, ..., u,
where given by
Ry (1.3) a4,= L N(E)uu n=0,1,... (24)
j=0 asz " I’l' dAVl i=0 ! )\ZO’ >
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Upon substituting Eq. (2.2) and (2.3) into the functional
equation (2.1) yields

éun - EZ‘BA,, =f. (2.5)

The convergence of the series in (2.5) will yield

Uy = f

u = AO

U, = Al (26)
U, = An*]

Thus, one can recurrently determine every term of the
series 2, u,. The convergence of this series has been
established (see [13, 14]). In [14] a proof of convergence
is established using fixed point theorems. In [13] the
hypotheses for proving convergence are less restrictive and
are generally satisfied in physical problems. The two
hypotheses that are necessary for proving convergence of
Adomian’s technique as given in [13] are:

1. The nonlinear functional equation (2.1) has a series
solution 2, u, such that 2,_, (1 + &)"|u,| < o, where
e > 0 may be very small.

2. The nonlinear operator N(u) can be developed in
series according to u: N(u) = 2,- o,u’.

To illustrate the scheme, let N(u) be a nonlinear function
of u, say g(u), where

u=uy+ Ay + Auy, + ...
then the first four Adomian’s polynomials A, are given by

Ao = g(u(A))|i-0 = g(uo)
A, = (dg/du)(duld))|,~
Ay = H(dhldu?)(duldA)? + (dg/du)(d2uld®)|o  (27)
Ay = Y(d3gldi®)(duld)\) + 2(dgldu?)(duld))(d?uld)\?)
+ (d*g/du®)(duld)*)(duld))
+ (dgldu)(d>uldA®)]|s-o-
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The A,s can finally be written in the following conve-
nient way

A, = c(v,n)g"(up). (2.8)
r=1
The result is
Ao = g(uo)
d
A=y Eg(uo)
’ (2.9)

2
ui d

d 2
Az=uzd—uog(uo) +§d_u%g(”°)
_d d? w &
As= ”3d_u0g(u°) + uluzd—u%g(uo) + id_ugg(%)'

How do we interpret and solve the Klein—Gordon equation
in this setting? Following the Adomian decomposition
analysis [4-5], define the linear operators

92 92
Li=—, L,=7>,
! ax?

pyeR : i=1,2,.. m.

(2.10)

Consequently, (1.1) can be rewritten in terms of the opera-
tors (2.10) as

Ly = Lou—bu—g(u)+f. (2.11)
i=1

It was shown in [18] that Eq. (1.1) with conditions (1.2)
possesses a unique solution. Thus the inverse operator of
L,, namely L;!, exists and is the twofold indefinite inte-
gral; i.e.,

(L7 F](1) = jo du jo dv f(v). (2.12)

Operating on both sides of (2.11) with L, yields
Li'Lu= L'Lyu—bL'u—L'(g(u) + L;'f (2.13)
i=0

from which it follows, upon using the initial conditions
given in (1.2),

u(x,t) =ay(x) +a xt+mL’le_u
(x, 1) = ao(x) + ai(x) ;()t : 214)

—bL;'u— L;'(g(u)) + L;'f.
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The Adomian decomposition method yields the solution
in the form given in (2.2). The first term u, can be deter-
mined as

uo(x, 1) = ag(x) + ay(x)t + L' (f(x, 1)) (2.15)

If we set N(u) = g(u) = 2.-o A,, then the next iterates
are determined via the recursive relation

Uner = > L' Loy — bL'w, — LA, n=0.

i=0

(2.16)

Hence, using (2.9), the first three iterates are given by

up =2 L' Lyuo — bL; ug — L' (g (o))
uy = 200 L Loy — bL'uy — L (g (o))

- (2.17)
us = 2o L[_leiMZ —bL;'u,

d ui ¢
- Lt]<uzd—uog(uo) + 2_;d_u(2)g(u0))'

For later numerical computation, let the expression

n-1

b, = z ui(x,1)

i=0

(2.18)

denote the n-term approximation to u. Slnce the series
converges very rapidly, the sum ¢, = > 70 u; can serve as
a practical solution.

We will show through several examples, that the number
of terms required to obtain an accurate computable solu-
tion is very small.

3. ILLUSTRATION OF THE METHOD

In this section we shall consider four examples where
in (1.1) g is assumed to be either u, u?, u?, or sin u, respec-
tively. The outcome of Adomian’s decomposition method
shall be compared with any known solution to the underly-
ing Klein—-Gordon equation. The solutions obtained are
generated by using MAPLE.

ExampLE 1. Consider the Klein—-Gordon equation of
the form
Uy — Uy — 2u = —2sinxsint
(3.1
u(x,0) =0, ulx,0)=sinx.

The term 2 sin x sin ¢ will be shown to be a noise term.
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Equation (2.14) implies that

u(x,t) =tsinx + L;'Lu+2L'u
(3.2)
+ L;/Y(—2sinxsint).

If u(x, t) = 2_ t,, then (2.15) and (2.17) imply that the
various iterates can be determined as

up=tsinx + L;'(—2sin x sin t)

(3.3)
=2sinxsint— tsinx
and
u = L[_lel/l() + 2L,‘1u0
= L;'(L(2sinxsint— ¢sinx))
+ 2L7'(2sinxsint — sin x) (3.4)
= L;'(2sinxsint — £sin x)
1 3
= —2sintsinx + 2¢sinx — 5': sin x.
In a like manner, we find
U, = L,’]Lxm + 2L;]M1
(3.5)
=2sinxsint— 2¢tsinx + i3 sinx — asmx
and
Uz = L;lel/lz + 2L;1UZ
= —2sinxsinf+ 2¢sinx — 3 sinx (3.6)
215 _ i
5 sin x 7 sin x.
Also,
= L;ILXM:; + 2L;1M3
=2sinxsins— 2tsinx + 3 sinx (3.7)
— gts sin x + gﬂsmx - lt9 sin x
S! 7! 9! )
Upon summing these iterates, we observe that
3 . t3 5 7
¢4=§Ju,—=smx t— +5' 7 (3.8)
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and

4
¢5=2u,-=2$inxsint

i=0
. A S A o
—smx<t—§+§—ﬁ+a.

(3.9)

This explains the phenomena that 2 sin x sin ¢ is the
self-canceling “noise” term. Further, canceling the noise
term we obtain inductively the exact solution to (3.1)
given by

u(x,t) = sin x sin . (3.10)

Table I shows the errors obtained upon solving the Klein—
Gordon equation (3.1) using only three terms of the de-
composition method. In Table I and thereafter, error is
understood to be = |true value — approximate value|.
Hence, in Table I error = [sin x sin ¢ — ¢s|. It is noted that
only three terms were needed to obtain an error of less
than 1%. The overall errors can be made much smaller by
adding new terms of the decomposition.

Our next example (see [20, 24]) focuses on a nonlinear
problem that cannot be solved explicitly. The standard
method that is used to handle such an equation is the
perturbation method which reduces the underlying equa-
tion to a class of linear partial differential equations. We
will present the decomposition method as an alternative
for solving the equation.

ExawmpLE 2. Consider the hyperbolic equation

Wy = YWar + Ew — ow’ =0, (3.11)

where v, ¢, o are appropriate physical constants, with the
initial conditions

w(x,0) =ecoskx, w(x,0)=0, —o<x<ow (3.12)

TABLE 1

Error Obtained Using Decomposition Method with
Three Iterations

X t=02 t=04 t=0.6

0.2 2.6 X 107* 52 X 107* 7.5 X 1074
04 2.10 x 1073 412 x 1073 598 x 1073
0.6 7.03 X 1073 1.377 X 1072 1.9964 X 1072
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with 0 < & < 1 and k is a specified constant. When w =
eu, the above equation reduces to

Uy — 'quxx + u — *ou’ =0

W 0) 0 (3.13)

u(x,0) = cos ks,

Equation (3.13) is an example of (1.1) with g being a cubic
function and f(x, t) = 0. Equation (2.14) implies that

u(x,t)=cosks + y*L;'L.u
' (3.14)
— AL+ ol (ud).

For convenience later we set w?> = y?k? + ¢2, which is the
dispersion relation for the linear Klein—-Gordon equation.
The iterates u(x, t) = 2, u,, upon using (2.15) and (2.17),
are given by

uy = cos kx (3.15)
and
uy =YL Ly — AL ug + 2oL (ud) (316)
= - % ’t? cos kx + 20t*(§ cos kx + § cos 3kx) + O(&%).
Similarly,
w, =y L Ly — ¢*L; uy + 2oL Buiuy)
w*t* cos kx — K 2013w cos kx 3.17)

) 41
+ (Bk*>y* + @) cos 3kx] + O(&%)
and
us = VL Loy — 2L uy + €20 L7 Buiuy + 3ugu?)
L 66 e’o 4
= —— + —
g @10 cos kx 261 #[75w* cos kx
+ (1299*k* + 90y*c®k? + 25¢*) cos 3kx] + O(&3).

(3.18)

Finally,
uy =y’ L' Loz — AL us + 2oL Buius + 6uguyus + u3)

— l 4.4 _ 82_0- 8 0
BTk t* cos kx 2‘7!t [39° cos kx
+ (13¢® + 93y k* + 54c*yk?

+ 84v°k%) cos 3kx] + O(&%).

(3.19)
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Combining these iterates yields

(1 L w’t? + 1 w'tt — 1 @%t® + 1 w8t8> cos kx

2! 4! 6! 8
+ sza[g 12— %wzt“ 47—2' Wt — % w6t8} cos kx

1 1
2 Z 42 = 27,2 2)+4
+80’[8t 4!(3k7 + )t
1 (3.20)
+ m (129’)/4k4 + 90’y2k2C2 + 25C4)t6

= —% (13¢® + 93¢y k* + S4c*y’k?

+ 8476k6)t8] cos 3kx + O(&%).

Inductively, the first term of the series is cos wt cos kx while
the other terms, upon comparing them with the results of
the perturbation method, yield

90 .
u(x,t) = cos wt cos kx + &2 | ==t sin wt
(x.0) [32(»

30
+ 332 (cos wt — cos 3wt)] cos kx
(3.21)

(o

30
2| 29 _
+ e [128')/21{2 (cos wt — cos At) + 128¢
(cos At — cos 3wt)} cos 3kx + O(&%),

where
A2 = 9y + 2

Adomian’s method led to the same approximate solution
obtained by the perturbation method. While in the pertur-
bation method, one needs to solve a class of linear partial
differential equations and match the boundaries to obtain
the solution; in the decomposition method, once the prob-
lem is properly set, one only needs to differentiate and
integrate to obtain Adomian’s polynomials A, and conse-
quently u.

Our third example involves the sine—Gordon equation.

ExampLE 3. Consider the pendulum-like equation
2
% =sinu (3.22)
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with the following initial conditions:

(3.23)

Equation (3.22) arises from the general sine—Gordon
equation

Uy — Uy —Sinu =0 (3.24)

which is a model for the nonlinear meson fields with peri-
odic properties for the unified description of mesons and
their particle sources (see [21]). Simple solutions of (3.24)
may be found in which u is a function of ¢ = (x —
vt)/V1 — v2 In this case, the field equation (3.24) reduces
to the pendulum-like equation d’u/d¢* = sin u. For a real
physical velocity v < 1, there are implicit solutions given
by sin su = *sech(¢ — &) which have particle number
N = #*1 and total energy £ = (2/7)(1/V1 — v?). These
may be interpreted as the fields associated with a particle
of mass 2/m centered at £ = & and moving with velocity
v [21].

We will show, using Adomian’s decomposition method,
how to obtain solutions that coincide with the implicit
solutions of Egs. (3.22)-(3.23) given by

sin su = sech . (3.25)

We will first describe the decomposition scheme as it
applies to the general sine—Gordon equation (3.24). If we
set L, = 0%/, L, = 9*/0x?, N(u) = sin u, then Eq. (2.14)
implies that the solution of (3.22) can be expressed in the
operator form

u(x,t) — u(x,0) — tu(x,0) = L' Lau + L7'N(u).  (3.26)

Thus writing w(x, t) = 2, t,, and N(u) = sin u =
2,-0 A, then, using (3.26) and (2.16), the various iterates
are given by

Ups1 = L' Lo, + LA, n=0 (3.27)

with

uy = u(x, 0) + tu(x, 0). (3.28)
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For N(u) = f(u) = sin u and upon using (2.9), we have

AO = sin U

A = Uy cos iy

2

ur .
A, = u,cosuy — gsm U
3.29
_ o (3:29)
A3 = U3 COS Uy — Ul SIN Uy — 5 COS Uy

Therefore, since u, is known, Egs. (3.27)—(3.28) provide
the series solution X, u,,, where

uo = u(x,0) + tulx,0)
u, = Lt_lLXLl() + Lt_lA()

U, = L,"leul + Lt_lA]
(3.30)

Up1 = LfleMn + L;IArz

with the A,s given in (3.29).

We will adapt the above algorithm in (3.30) to the pendu-
lum-like equation given in (3.22) with initial conditions
(3.23), where u is only a function of ¢. For this special case,
the polynomials A, given in (3.29) are dependent on ¢ only.
The solution (3.27) thus reduces to

— 7 -1
Upi1 = Lt Anv n= Oa

(3.31)

where

o = u(0) + t%(O) — (332)

Using (3.30) and (3.31)-(3.32) the various iterates are
given as

u = L;IAO = L;l(sin uo) (333)
=1t — %sin2t.
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In a like manner, we find upon using the identity cos(7 —
2t) = —cos 2t,

U, = L;lAl = L[l(ul COS Llo)

= —L; ' (u;y cos 2t) (3.34)
= £t — 3sin 2t + it cos 2t — & sin 2¢ cos 2t
and
2
-1 -1 25
us=L;"A, = L; | uycosuy — 58111%
= L Y{(—cos2t)u, + (—%sin 2t)ut}
=&t — 25sin 2t + £t cos 2t (3.35)
— & sin2¢cos 2t + 5t sin 2t
+ &t cos? 2t — sm5z cos? 2t sin 2t + 1is5 sin’ 2¢,
where in (3.35) the identities cos(m — 2¢) = —cos 2¢ and

sin(m — 2t) = sin 2¢ are used.

Higher iterates can be determined similarly. Upon com-
bining the first six iterates and expanding in Taylor’s series
around ¢ = 0, we obtain

~ 2, 10, 6l
u—77_2[+§l3_§l‘+ﬁl
2770, . 103058 ,,

o T 7

(3.36)

which coincide with Taylor expansion of (3.25). We ob-
served that each time an iterate is added, the Taylor expan-
sion coincides to the next higher term.

Our final example deals with a nonhomogeneous Klein—
Gordon equation having a quadratic nonlinear term.

ExawmpLE 4. Consider the Klein—Gordon equation of
the form

2
T T
Uy — Uy + Vi + u?=x*sin’= ¢
(3.37)

u(x,0)=0, ulx,0)= gx.
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Equation (2.14) implies that

2
u(x,t)y=%mxt + L7 L — %L,’lu
(3.38)

- L7'(u?) + L (xzsin2 72—T t>.

Thus if u(x, 1) = =, u,, then using (2.15)—-(2.17) the first
three terms are given by

T
uy = smxt + Lt1<x2 smzz t)

(3.39)
2
=lmxt— 355+ %<t2 + %cos m) x?
T T
and
2
u = L;lLXl/lQ - Z L;luo - L[l(u(z)) (340)
In a like manner,
77.2
U, = L[_]Lxu] - ZL;lu] - L[l(Zuoul) (341)
.
uy=L7'Lau, — ZL,’luz — LY uf + 2uouy).  (3.42)
The exact solution of (3.37) is given by
.
u(x,t) =xsin-t. (3.43)

2

The exact solution was compared with the approximate
solution using Adomian’s method. Tables II and III show
the errors obtained by using the approximation ¢; and ¢y,
as defined in (2.18), respectively. It is evident that the error

TABLE 11

Errors Obtained Using Decomposition Method with
Three Iterations
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TABLE III

Errors Obtained Using Decomposition Method with
Four Iterations

t x =0.1 x =02 x =03 x =04 x = 0.5
0.1 28x10"% 70x 105 1.7x 10" 46x 104 78 x 10"
02 37x10" 25x%x 10" 86x 1012 12x 101 3.7 x 107
03 23x10° 18x10° 10x10° 42x 10" 13x 107
04 43x10% 36x%x10®% 25x10% 81x10° 14x10°%
05 42x107 36x107 27x107 12x107 80X 108

t x=0.1 x =02 x =03 x =04 x =05
01 12x10" 63 x 107" 12X 1071 1.8 X 107 24 x 1071
02 29x10° 42x10° 12x10% 21x10% 31x10°8
03 13x107 33x10° 16x107 33Xx107 53 x 1077
04 15X10° 49x107 77107 23X10° 40X 10°
05 99Xx10° 47x10° 18x10° 98X 10° 1.9 X107

decreases as the number of iterations increase. Conver-
gence is rapid and the errors are extremely small. The
presence of self-canceling noise terms such as —3(x?/27?)
and 12x? in Eq. (3.39) affects the monotonicity of the errors

(see [3]).
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